Systems Simulation
ECE 597/697 S

Statistical Analysis of Simulated Data

Prof. Michael Zink
Overview

- Introduction
- Sample mean and variance
- Estimation of population variance
- When to stop generating new data?
- Interval estimates of population mean
- Bootstrapping technique
Introduction I

- Simulation study undertaken to determine value of some quantity θ connected with a particular stochastic model.
- Simulation results in data X whose expected value is the quantity of interest θ.
- Second simulation provides new and independent variable having mean θ.
- After k runs i.i.d random variables X_1, \ldots, X_n with mean θ.
- The average of these k values is then used as an estimator, or approximator, of θ.
Introduction II

- Consider the problem of deciding when to stop the simulation study – that is, deciding on the appropriate value of k.
- Consider the quality of estimator θ.
- Obtain an interval in which θ lies with a certain degree of confidence.
Sample Mean and Sample Variance

- Suppose that X_1,\ldots, X_n are independent random variables having same distribution function.
- Let $\theta = E[X_i]$ and $\sigma^2 = \text{Var}(X_i)$ denote mean and variance.
- The sample mean is defined as $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ which is often used to estimate population mean θ.
- Because

\[
E[\bar{X}] = E \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \frac{n\theta}{n} = \theta
\]
Sample Mean and Sample Variance

- \bar{X} is an unbiased estimator for θ.
- Consider mean square error to determine if \bar{X} is a good estimator of mean θ.

$$E\left[(\bar{X} - \theta)^2 \right] = Var(\bar{X}) \quad (E[\bar{X}] = \theta)$$

$$= Var\left(\frac{1}{n} \sum_{i=1}^{n} X_i \right)$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) \quad (\text{by independence})$$

$$= \frac{\sigma^2}{n} \quad (Var(X_i) = \sigma^2)$$
Sample Mean and Sample Variance

- \bar{X}, the sample mean of $X_1,...,X_n$ is a random variable with mean θ and variance σ^2/n.
- Random variable is unlikely to be too many standard deviations from its mean it follows: \bar{X} is a good estimator if $\frac{\sigma}{\sqrt{n}}$ is small.
Remark

- Justification of statement that “a random variable is unlikely to be too many standard deviations away from its mean”
- If \(n \) is large, which is usually the case in simulations, central limit theorem can be applied.
- Thus one can assert that \((\bar{X} - \theta)/(\sigma/\sqrt{n})\) is approximately distributed as a standard normal random variable; and thus

\[
P\left\{ \left| \bar{X} - \theta \right| > c\sigma/\sqrt{n} \right\} \approx P\{ |Z| > c \} = 2\left[1 - \Phi(c) \right]
\]

where \(\Phi \) is the standard normal distrib. function
Remark

- For example, since \(\phi(1.96) = 0.975 \) the equation above states that sample mean differs from \(\Theta \) by more than \(1.96 \sigma / \sqrt{n} \) is approximately 0.05.

- Difficulty with directly using \(\sigma^2 / n \) of how well the sample mean of \(n \) data values estimates the population mean is:
 Population variance \(\sigma^2 \) is not usually known.

- Thus is also must be estimated.
Estimation of Population Variance σ^2

- Problem of using σ^2 as an indicator for quality of sample mean is that population variance is usually not known – need to estimate it.

- Since $\sigma^2 = E[(X - \theta)^2]$ is the average of the square of the differences of a datum value and its unknown mean.

- Upon using \overline{X} as the estimator of the mean a natural estimator of the population variance would be $\sigma^2 = \sum_{i=1}^{n} \frac{(X_i - \overline{X})^2}{n}$
Estimation of Population Variance σ^2

- **Definition:** The sample variance S^2 is defined by

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n - 1}$$

- **Proposition:**

$$E[S^2] = \sigma^2$$
Estimation of Population Variance σ^2

- **Proof:** Using the algebraic identity

$$\sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} X_i^2 - n\overline{X}^2$$

we see that

$$(n - 1)E[S^2] = E\left[\sum_{i=1}^{n} X_i^2\right] - nE[\overline{X}^2]$$

$$= nE[X_1^2] - nE[\overline{X}^2]$$

since all X_i have the same distribution.
Estimation of Population Variance σ^2

- **Proof cont’d:** with

\[
E[Y^2] = \text{Var}(Y) + (E[Y])^2
\]

we obtain

\[
E[X_1^2] = \text{Var}(X_1) + (E[X_1])^2
\]

\[
= \sigma^2 + \theta^2
\]

\[
E[X^2] = \text{Var}(X) + (E[X])^2
\]

\[
= \frac{\sigma^2}{n} + \theta^2
\]
Estimation of Population Variance σ^2

- Thus we obtain:
 $$(n - 1)E[S^2] = n(\sigma^2 + \theta^2) - n\left(\frac{\sigma^2}{n} + \theta^2\right) = (n - 1)\sigma^2$$

- Sample variance S^2 is used as estimator for variance σ^2.

- $S=\sqrt{S^2}$ as sample standard deviation.

- When should we stop generating new data?
 - Chose acceptable standard deviation d.
 - Generate new data until σ/\sqrt{n} –namely S/\sqrt{n}- is smaller than d.
 - Since sample standard deviation might not be a good estimate for small sample size, following procedure is recommended.
When to Stop Generating new Data?

1. Choose and acceptable value \(d \) for the standard deviation of the estimator.
2. Generate at least 100 data values.
3. Continue to generate additional data values, stopping when you have generated \(k \) values and \(\frac{S}{\sqrt{k}} < d \), where \(S \) is the sample standard deviation based on those \(k \) values.
4. The estimate of \(\theta \) is given by \(\overline{X} = \sum_{i=1}^{k} \frac{X_i}{k} \)
Example I

- Service system in which now customer are allowed after 5PM.
- Estimate time at which last customer exits system
- Be 95% certain that estimated answer will not differ from true answer by more than 15 seconds.
- Generate k values by the equivalent number of simulation runs such that $1.96S/\sqrt{k} < 15$ – where S is the sample standard deviation (in seconds) of these k data values.
- Estimate of the expected time of last customer departure will be average of k data values.
Recursive Computation

- Consider sequence of data values X_1, X_2, \ldots, X_n and let
 \[
 \bar{X}_j = \sum_{i=1}^{j} \frac{X_i}{j} \quad \text{and} \quad S_j^2 = \sum_{i=1}^{j} \frac{(X_i - \bar{X}_j)^2}{j - 1}, \quad j \geq 2
 \]
denote the sample mean and the sample variance of the first j values.
- Use following the following recursions for sample mean and variance. With $S_1^2 = 0$, $\bar{X}_0 = 0$
 \[
 \bar{X}_{j+1} = \bar{X}_j + \frac{X_{j+1} - \bar{X}_j}{j + 1} \quad \text{and} \quad S_{j+1}^2 = \left(1 - \frac{1}{j}\right)S_j^2 + (j + 1)\left(\bar{X}_{j+1} - \bar{X}_j\right)^2
 \]
Example II

If first three data values are: \(X_1 = 5, \ X_2 = 14, \ X_3 = 9, \)
then the two equations from above yield:

\[
X_1 = 5 \\
X_2 = 5 + \frac{9}{2} \\
S_2^2 = 2 \left(\frac{19}{2} - 5 \right)^2 = \frac{81}{2} \\
X_3 = \frac{19}{2} + \frac{1}{3} \left(9 - \frac{19}{2} \right) = \frac{28}{3} \\
S_3^2 = \frac{81}{4} + 3 \left(\frac{28}{3} - \frac{19}{2} \right)^2 = \frac{61}{3}
\]
Case of Bernoulli Random Variables

- Somewhat modified analysis in case of Bernoulli random variables.
- Suppose random variable X is created as follows:

 $$X_i = \begin{cases}
 1 & \text{with probability } p \\
 0 & \text{with probability } 1 - p
 \end{cases}$$

 and we are interested in $E[X_i] = p$.

- Since in this case $Var(X_i) = p(1-p)$, there is no need to utilize sample variance to estimate $Var(X_i)$.
Case of Bernoulli Random Variables

- After generating \(n \) variables \(X_1, \ldots, X_n \), then an estimate of \(p \) will be
 \[
 \bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i
 \]
 and a natural estimate of \(\text{Var}(X_i) \) is
 \[
 \bar{X}_n \left(1 - \bar{X}_n\right)
 \]

- Following method to decide when to stop:
 1. Chose an acceptable value \(d \) for the standard deviation of the estimator.
 2. Generate at least 100 data values.
 3. Continue to generate additional data values, stopping when \(k \) values generated and
 \[
 \left[\bar{X}_k \left(1 - \bar{X}_k\right)/k\right]^{1/2} < d
 \]
 4. The estimate of \(p \) is \(\bar{X}_k \)
Example III

- In Example I we are interested in estimating the probability that there was still a customer in the store at 5:30.

\[X_i = \begin{cases}
1 & \text{if there is a customer present at 5:30 on day } i \\
0 & \text{otherwise}
\end{cases} \]

- Simulate 100 days and continue until \(k \)th day, where \(k \) is such that \([\overline{X}_k (1 - \overline{X}_k) / k]^{1/2} < d\)

- \(p_k = \overline{X}_k \) is the proportion of \(k \) days on which there is a customer present at 5:30 and \(d \) is an acceptable value for the standard deviation of the estimator \(p_k \).
Interval Estimates of Population Mean

- X_1, X_2, \ldots, X_n are independent random variables from a common distribution having mean θ and variance σ^2.
- Although sample mean is an effective estimator of θ we do not expect that it will be equal to θ but rather be “close”.
- It is sometimes more valuable to specify an interval for which we have a certain degree of confidence that θ lies within.
Interval Estimates of Population Mean

- To obtain such interval we need (approximate) distribution of estimator \bar{X}.
- Since $E[\bar{X}] = \theta$, $Var(\bar{X}) = \frac{\sigma^2}{n}$

it follows from the central limit theorem that for large n

$$\sqrt{n} \left(\frac{\bar{X} - \theta}{\sigma} \right) \approx N(0,1)$$

which means it is approximately distributed as a standard normal.
Interval Estimates of Population Mean

- If σ is replaced by its estimator S, the sample standard deviation, then it still remains the case that resulting quantity is approximately a standard normal.

- That is when n is large

$$\sqrt{n} \frac{\bar{X} - \theta}{S} \approx N(0,1)$$

- For any a, $0 < a < 1$, let z_a be such that $P\{Z > z_\alpha\} = \alpha$ where Z is a standard normal random variable and if follows that $z_{1-a} = -z_a$.
Interval Estimates of Population Mean

- **Definition:** *If the observed values of the sample mean and the sample standard deviation are \(\bar{X} = \bar{x} \) and \(S = s \), call the interval \(\bar{x} \pm z_{a/2} s / \sqrt{n} \) an (approximate) 100(1-\(a\)) percent confidence interval estimate of \(\Theta \).*
Example IV

- Assume simulation study in which additional values can be generated and question is when to stop.
- Initially choose values α and l and continue generating data until approximate $100(1-\alpha)\%$ confidence interval estimate of θ is less than l.
Example IV

- Since length of interval will be \(2z_{a/2}S/\sqrt{n}\) this can be accomplished by the following technique:

1. Generate at least 100 data values.
2. Continue to generate additional data values, stopping when the number of values you have generated \(k\) is such that \(2z_{a/2}S/\sqrt{n} < l\). where \(S\) is the sample standard deviation based on those \(k\) values. (Constantly updating \(S\) by using recursion.)
3. If \(\bar{x}\) and \(s\) are the observed values of \(\bar{X}\) and \(S\), then the \(100(1-a)\)% confidence interval estimate of \(\theta\), whose length is less than \(x \pm 2z_{a/2}S/\sqrt{k}\).
Bernoulli Random Variable Case

\[X_i = \begin{cases}
1 & \text{with probability } p \\
0 & \text{with probability } 1 - p
\end{cases} \]

- Here \(\text{Var}(X_i) \) can be estimated by \(\bar{X}(1 - \bar{X}) \) and it follows:

\[
\sqrt{n} \frac{(\bar{X} - p)}{\sqrt{\bar{X}(1 - \bar{X})}} \approx N(0,1)
\]

- And for any \(\alpha \)

\[
P \left\{ -z_{\alpha/2} < \sqrt{n} \frac{(\bar{X} - p)}{\sqrt{\bar{X}(1 - \bar{X})}} < z_{\alpha/2} \right\} = 1 - \alpha
\]

- Hence, \(100(1-\alpha)\% \) confidence interval estimate of \(p \) is

\[
p_n \pm z_{\alpha/2} \sqrt{p_n(1 - p_n)/n}
\]
Bootstrapping Technique

- $X_1, X_2, ..., X_n$ are independent random variables having common distribution function F.
- Suppose we are interested in using them to estimate some parameter $\theta(F)$. (E.g. mean, median, variance, or any other parameter of F.)
- Also, an estimator of $\theta(F)$ – call it $g(X_1, ..., X_n)$ – has been proposed.
- To judge its quality as an estimator, estimate its mean square error:

$$MSE(F) \equiv \mathbb{E}_F \left[\left(g(X_1, ..., X_n) - \theta(F) \right)^2 \right]$$
Bootstrapping Technique

- If distribution function F were known one could compute expected square of the difference between θ and its estimator.
- However after n data points, pretty good idea what distribution looks like.
- Assume observed values of the data are $X_i = x_i$, $i=1,...,n$.
- Now distribution function F can be estimated by empirical distribution function F_e

$$F_e(x) = \frac{\text{number of } i : X_i \leq x}{n}$$
Bootstrapping Technique

- If F_e is close to F, as it should be when n is large, then $\theta(F_e)$ will probably be close to $\theta(F)$ and $\text{MSE}(F)$ should approximately be equal to

\[
\text{MSE}(F_e) \equiv E_{F_e} \left[(g(X_1, \ldots, X_n) - \theta(F_e))^2 \right]
\]

- X_i are independent random variables having distribution function F_e.
- The quantity $\text{MSE}(F_e)$ is called the bootstrap approximation to the mean square error $\text{MSE}(F)$.
Example V

- Interested in estimating $\theta(F) = E[X]$ by using the sample mean $\bar{X}_n = \sum_{i=1}^{n} x_i / n$.
- If observed data are x_i, $i=1,...,n$ then empirical distribution puts weights $1/n$ on each x_i.
- $\theta(F_e) = \bar{x} = \sum_{i=1}^{n} x_i / n$
- The bootstrap estimator of the mean square error-call it $MSE(F_e)$-is given by

$$MSE(F_e) = E_{F_e} \left[\left(\sum_{i=1}^{n} \frac{X_i}{n} - \bar{x} \right)^2 \right]$$
Example V

- Since

\[E_{F_e} \left[\sum_{i=1}^{n} \frac{X_i}{n} \right] = E_{F_e} [X] = \bar{x} \]

- It follows that

\[
MSE(F_e) = Var_{F_e} \left(\sum_{i=1}^{n} \frac{X_i}{n} \right) \\
= \frac{Var_{F_e} (X)}{n}
\]
Example V

- Now

\[\text{Var}_{F_e}(X) = E_{F_e} \left[(X - E_{F_e}[X])^2 \right] \]

\[= E_{F_e} \left[(X - \bar{x})^2 \right] \]

\[= \frac{1}{n} \left[\sum_{i=1}^{n} (x_i - \bar{x})^2 \right] \]

- And so

\[\text{MSE}(F_e) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})}{n^2} \]
Example V

\[\text{MSE}(F_e) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})}{n^2} \]

- compares well to \(S^2/n \) because the observed values is

\[
\frac{S^2}{n} = \sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{n(n-1)}
\]
Example VI

- Illustration of the bootstrap technique in analyzing the output of a queuing simulation.
- In Example I we are interested in estimating the long-run average amount of time a customer spends in the system.
- That is, letting W_i be the amount of time the ith customer spends in the system $i \geq 1$, we are interested in

$$\theta \equiv \lim_{n \to \infty} \frac{W_1 + W_2 + \cdots + W_n}{n}$$
Example VI

- To show that above limit does exist (random variables W_i are neither independent nor identically distributed) let N_i denote customers that arrive at day i, and let

$$D_1 = W_1 + \cdots + W_{N_1}$$

$$D_2 = W_{N_1+1} + \cdots + W_{N_1+N_2}$$

and in general, for $i \geq 2$,

$$D_i = W_{N_1 + \cdots + N_{i-1} + 1} + \cdots + W_{N_1 + \cdots + N_i}$$

- D_i is the sum of the times in the system of all arrivals on day i.
Example VI

- θ can now be written as

$$\theta = \lim_{m \to \infty} \frac{D_1 + D_2 + \cdots + D_m}{N_1 + N_2 + \cdots + N_m}$$

$$\theta = \lim_{m \to \infty} \frac{D_1 + D_2 + \cdots + D_m}{m/N_1 + N_2 + \cdots + N_m / m}$$

This ratio is just the average time in the system of all customers.
Example VI

- Now each day follows the same probability law and random variables D_1, \ldots, D_m and N_1, \ldots, N_m are i.i.d.

- By strong law of large numbers average of the first m of the D_i will, with probability 1, converge to their common expectation. (Same is true for N.)

$$\theta = \frac{E[D]}{E[N]}$$

where $E[N]$ is the expected number of customers to arrive in a day, and $E[D]$ is the expected sum of the times those customers spend in the system.
Example VI

- To estimate Θ simulate system over k days.
- Because $E[D]$ and $N[D]$ can be estimated by

$$\overline{D} = \frac{D_1 + D_2 + \cdots + D_k}{k}$$

$$\overline{N} = \frac{N_1 + N_2 + \cdots + N_k}{k}$$

- $\Theta = E[D]/N[D]$ can be estimated by

$$\overline{\frac{D}{N}} = \frac{D_1 + D_2 + \cdots + D_k}{N_1 + N_2 + \cdots + N_k}$$

which is just the average time in the system of all arrivals during the first k days.
Example VI

- To estimate
 \[MSE = E \left[\left(\frac{\sum_{i=1}^{k} D_i}{\sum_{i=1}^{k} N_i} - \theta \right)^2 \right] \]
 we employ the bootstrap approach.

- Suppose that the simulation resulted in \(n_i \) arrivals on day \(i \) spending a total time \(d_i \) in the system.

- Under the empirical distribution function we have
 \[P_{F_e} \{ D = d_i, N = n_i \} = \frac{1}{k}, \quad i = 1, \ldots, k \]
Example VI

Hence, \(E_{F_e}[D] = \bar{d} = \sum_{i=1}^{k} \frac{d_i}{k}, \quad E_{F_e}[N] = \bar{n} = \sum_{i=1}^{k} \frac{n_i}{k} \)

\[
\theta(F_e) = \frac{\bar{d}}{\bar{n}}
\]

\[
MSE(F_e) = E_{F_e} \left[\left(\frac{\sum_{i=1}^{k} D_i}{\sum_{i=1}^{k} N_i} - \frac{\bar{d}}{\bar{n}} \right)^2 \right]
\]
Example VI

- Exact computation of the MSE would require computing the sum of k^k terms
- Simulation experiment to approximate it.
- Compute
 \[
 Y_1 = \left(\frac{\sum_{i=1}^{k} D_i^1}{\sum_{i=1}^{k} N_i^1} - \frac{\bar{d}}{\bar{n}} \right)^2
 \]
- Then compute Y_2, \ldots, Y_r ($r=100$ should be sufficient)
- The average of these r values is then used to estimate $MSE(F_e)$
Summary

- Sample mean and variance
- Estimation of population variance
- When to stop generating new data?
- Interval estimates of population mean
- Bootstrapping technique